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Abstract
Wearable human activity recognition has been shown to bene!t
from the inclusion of acoustic data, as the sounds around a person
often contain valuable context. However, due to privacy concerns, it
is usually not ethically feasible to record and save microphone data
from the device, since the audio could, for instance, also contain
private conversations. Rather, the data should be processed locally,
which in turn requires processing power and consumes energy on
the wearable device. One special use case of contextual information
that can be utilized to augment special tasks in human activity
recognition is water "ow detection, which can, e.g., be used to aid
wearable hand washing detection. We created a new label called tap
water for the recently released HD-Epic data set, creating 717 hand-
labeled annotations of tap water "ow, based on existing annotations
of thewater class.We analyzed the relation of tap water andwater in
the dataset and additionally trained and evaluated two lightweight
classi!ers to evaluate the newly added label class, showing that the
new class can be learned more easily.

CCS Concepts
• Human-centered computing→ Ubiquitous and mobile comput-
ing.
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1 Introduction
Human Activity Recognition (HAR) is an increasingly multimodal
!eld [18, 26, 28]. In addition to the traditionally used IMUs and RGB-
cameras, a multitude of other sensing modalities can be employed
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to add context and additional information to the existing HAR sys-
tems. Such modalities include, but are not limited to, environmental
sensors (humidity, pressure, temperature, brightness) [1, 3], biosig-
nals (e.g., heart rate, electrodermal activity, electromyography), or
proximity sensors [9].

Another promising example of an additional modality is sound,
which can be recorded with commercially available microphones
with small e#ort and low cost. Acoustic activity recognition and
sound event classi!cation are two subproblems one might want
to approach when using microphones. Acoustic sensing can be
employed to standalone classi!ers [15, 19]. While RGB(d)-cameras
perform worse when there are many occlusions, acoustic and IMU-
based models are challenged by ambiguities. Huh et al. describe this
fact with the words: “Some actions are audibly indistinguishable,
e.g. ‘wash carrot’ vs ‘wash tomato’, as it is impossible to determine
which vegetable is being washed through sound alone.” [13, 14].

Rather than relying on sound alone, recent works propose using
sounds as an additional modality to IMUs, RGB-cameras, or other
systems [4, 6, 29]. With the added context, systems could become
more reliable in picking up unusual instances of speci!c activities
and also become more robust against false positives. One example
of this is the problem of detecting hand washing among similar
activities using IMU sensors: The typical pattern of hand washing
often involves rapid and repetitive movements. However, these
patterns are not always present for every hand washing instance,
and similar patterns can also appear in other contexts, e.g., when
brushing one’s teeth [2]. With a microphone, the sound of the
activated tap, as well as the water’s “splashing” could be picked
up [25, 30]. By including the information, whether a running tap
could be detected nearby, both the rates of false negative and false
positive detections could likely be lowered. A similar solution is
allegedly used for the Apple Watch’s hand-washing timer feature,
but the implementation remains closed source [12, 17].

Existing sound datasets often include water-related sounds in
oneway or another, but the distinction of tap water from otherwater
sounds is included in few. However, since many existing datasets
already contain the relevant microphone recordings, just no speci!c
annotations, we were able to use a pre-existing dataset for this
work, by adding a new label class for tap water and annotating it
accordingly.

Applications. The previously mentioned detection of hand wash-
ing is only one application of tap water detection, other applications
include the monitoring of cooking (e.g., step detection, washing
vegetables, rinsing dishes), cleaning, other hygiene routines (e.g.,
brushing teeth), bathroom usage, and resource usage monitoring
(i.e. detecting water wastage). In all these !elds, a wearable device
could be used to support the user by tracking or habit coaching
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them, or help them to conserve water. Treating tap water as its
own separate class has multiple advantages. Tap water is strongly
associated with some speci!c, intentional, high-relevance activi-
ties, like the ones mentioned above. In contrast, the general water
label in audio datasets includes diverse sounds like rain, streams,
splashes, gurgling water in pipes, and pouring. These water-related
sounds vary greatly in frequency, duration, and intensity. Tap water
is more homogeneous, and therefore easier to learn for machine
learning models, as we show in this work.

An additional constraint of recording audio data is protecting all
users’ and non-users’ privacy. Since microphone recordings could
accidentally include private conversations, clues about the users’
whereabouts, or other personal information, they have to be han-
dled with a high level of care. Ideally, audio recordings should never
leave the recording device and should be immediately removed after
processing. This would ensure the highest possible protection of
the users’ privacy. To make this possible, classi!ers should be small
enough and require little complexity, as mobile devices need to be
powerful enough to run the required model inference. Focusing on
the task of tap water detection, we propose to train models using
our new annotations, which we created speci!cally for this task,
on the existing, but also very recently released, HD-Epic dataset.

The main goal of this work was to create a precisely annotated
dataset for the detection of running tapwater frommicrophone data.
The dataset can be employed for automated tap water detection on
wearable devices, which in turn has a multitude of applications.

Our main contributions in this paper are as follows:
(1) We motivate why on-device tap water detection is a crucial

task in activity recognition.
(2) We hand-labeled a precise, new class in the HD-Epic dataset,

resulting in 717 instances of tap water audio events.
(3) We show how this new tap water class compares to the

existing water class, demonstrating how HD-Epic’s sound
annotations can be used for audio-based activity recognition

(4) We created a pre-trained CNN ExecuTorch model to detect
tap water for deployment on wearables

Ensuring reproducibility: All code, data, annotations, and other
information needed to reproduce the results of this work can be
found online, in our GitHub repository1.

2 Related Work
Several annotated sound datasets containing water or tap water
have been published in the past. Table 1 allows a quick comparison
between the available datasets and our work. Notably, Perett et al.
have published HD-Epic, which is used as the basis of this work
[20]. Before that, an earlier version called Epic Sounds [13, 14] was
released as a derived work of the EPIC-KITCHENS-100 dataset [7].
These two datasets contain water as a class, but they avoid distin-
guishing it further into di#erent sub-classes of water-related sounds.
The ESC-50 dataset for environmental sound classi!cation (ESC)
[21] by Piczak et al. contains a collection of water-related sound
categories like rain, sea waves, water drops, pouring water, toilet
!ush, and thunderstorm. However, the dataset does not contain tap
water as a class. AudioSet by Gemmeke et al. [10] contains 10s audio

1https://github.com/RBurchard/hd-epic-tap

sample clips drawn from YouTube videos, which were categorized
into 527 sound event classes. The dataset includes 2442 of these
10s segments, in which tap water is present. However, the label
for each 10s audio clip only provides the information that at some
point in the clip tap water is present, and only 1𝐿𝑀 embeddings of
the audio data are published. Lastly, Fonseca et al. published the
FSD50K dataset [8], which contains 51 thousand audio clips from
Freesound, which were manually labeled into a selection of 200
classes of AudioSet’s ontology. This dataset contains 458 tap water
clips. Due to the samples being collected from Freesound, di#erent
licenses can apply, and the sounds in the FSD50K dataset are usually
very speci!c and distinct audio clips of just one annotated class,
without background noise.

To conclude, each of the listed audio datasets has important
limitations. Whether due to restricted access, the absence of precise
timestamp annotations, or a lack of realistic background sounds
that re"ect real-world conditions.

In the domain of audio event classi!cation, many di#erent audio
event recognition systems exist. Like in many machine learning
domains, feature extraction is an important part of such a system’s
pipeline, and features usually include Fourier transforms, cepstral
features, spectrograms, wavelet transforms, and statistical proper-
ties of the audio signal [6, 23]. For training classic machine learning
models, such as support vector machines or random forests, spec-
tral and statistical features are used [5, 22]. To train deep learning
models, existing research often relies on log-mel spectrograms as
the input to a convolutional neural network (CNN) [16, 27].

3 Methods
In this section, we report howwe created the new label class tap wa-
ter on a pre-existing dataset. Furthermore, we describe our !ndings
from the labeling process and the validation of the newly created
annotations. Lastly, we outline the creation of an automated de-
tection system for tap water detection on mobile devices using
lightweight machine learning algorithms.

3.1 Dataset
Weused the publicly available HD-EPIC dataset [20]with an adapted
label class. The original dataset contains activities from nine par-
ticipants, together with video and audio data, recorded at the par-
ticipants’ homes. We focus solely on the audio data, for which the
dataset contains 50,968 audio annotations of 44 classes, such as
click, rustle, or water. We chose the EPIC-HD dataset because it
o#ers high audio quality (48 kHz sampling rate) and has a high
quality of annotations. The dataset is also recorded in-the-wild, in
nine di#erent indoor environments, which helps to avoid over!t-
ting to a speci!c environment. However, none of the classes in the
existing annotations align perfectly with our focus on acoustic tap
water "ow detection. Thus, we used the water and pour classes as
a starting point to annotate a new class, tap water.

3.2 Label creation for the new class tap water
A single person, the !rst author of this publication, manually anno-
tated the entire dataset of nine participants. To do so, we did not go
through all video recordings again at their entire length, but rather
focused on improving the existing labels of water and pour for our
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Table 1: Audio datasets containing water-related annotations. The table shows the duration of contained tap water annotations,
the datasets’ sampling frequencies, whether the dataset is open (raw data freely available), the source of the audio data, and
whether the dataset is labeled accurately with start/end times for each sound (precise labels). We created 157 minutes of precise
annotations on the existing HD-Epic dataset. AudioSet provides its data as 128-dimensional audio embeddings extracted at 1 Hz
rather than raw audio.
dataset tap water duration (min.) add. water classes freq. (kHz) open source precise labels
Epic Sounds None water / pour 24 x EPIC-Kitchens-100 x
HD-Epic None (orig.) / 157 (ours) water / pour 48 x HD-Epic x
AudioSet 407, in 10s segments many, rain, streams, etc. 1 Hz (embeddings) - YouTube -
FSD50K ↑53, in 458 clips waterfall, waves, etc. variable, 44.1+ x Freesound -
ESC-50 None rain, waves, etc. 44.1 x Freesound -

task. This was based on the idea that tap water should be a subset
of water and pour. We include pour, because the word pour can also
imply water and tap water "owing, depending on interpretations
of natural language. However, we found that the original annota-
tions did not contain any tap water under pour labels. During label
creation, we gained some valuable insights into the audio aspect of
HD-Epic, which we also describe in this subsection.

3.2.1 Description of labeling criteria and initial results. The origi-
nal HD-Epic dataset contains 2974 water labels, and 171 instances
of pour. After analyzing the durations of the separate labels, we
found that roughly two-thirds of the labels were so short, that they
only made up for around 11% of the total water duration. We ar-
gue that these short water labels are unlikely to contain tap water
annotations, or even if they do, they are so short that they would
have little positive in"uence on the training and evaluation of a
classi!cation model. Therefore, we decided to only relabel labels
with a duration of three seconds or more. This cut-o# meant that
we relabeled only slightly more than one-third of the instances of
water, but we could still cover almost 90% of the time that was
labeled as an instance of this class. Out of the initial 2974 water
and 171 pour annotations, we investigated 1058 water and 40 pour
annotations that were longer than three seconds.

We created a tool to jump to water and pour labels in the record-
ings, and then, together with the videos, inspected and annotated
all occurrences of tap water being audible in the dataset. In the
HD-Epic dataset, water refers not only to taps running, but to
all water-related sounds, including but not limited to the sound
of single water drops, drain pipes gurgling, water splashing, and
sometimes even the stirring of a pot. Therefore, to obtain tap water
annotations, we hat to many water annotations had to be ignored,
shortened, or split up into multiple parts.

After manually labeling the videos of all 9 participants, we re-
ceived a total of 717 new annotations for tap water, with a total
duration of 9595 seconds. Leaving out newly created labels that
were shorter than 3 seconds, 9439 seconds of labels were created.
In total, the ratio of the durations of tap water labels compared to
water labels is 62 %, which means that while tap water is the largest
subset of the water class, it is also signi!cantly smaller. Thus, we
argue that it should be treated as a di#erent class than water, to
allow for higher granularity and better usability for augmenting
speci!c tasks, like hand washing detection.

Table 2 shows the durations and ratios of annotated times for
the water and tap water label classes. In total, HD-Epic contains

16981 seconds of water, out of which 15182 seconds were used by
us for analysis and creating the new label class tap water.

3.2.2 HD-Epic Dataset Findings. Overall, the quality of sound la-
bels in the HD-Epic dataset is high. Whilst investigating and aug-
menting the originally contained audio labels, we obtained some
learnings regarding these original audio labels, mostly related to
the water class.

Miss-classi"cations. There are many sounds present in a kitchen
environment that can sound similar to water, and that were there-
fore occasionally incorrectly labeled as water in the dataset. Some
examples include stirring a pot, whisking eggs, or the sound of
sizzling pans in the background. Additionally, plating non-liquid
food from a pan, moving food into a container, or an instance of
pour without water present were annotated as water. Additionally,
we found pour annotations when a participant was frothing milk
in one case, and handling a plastic bag in another case.

Inconsistencies. We found some inconsistencies in the labels,
where similar sounds were treated di#erently during the label cre-
ation. As an example, single drops of water in the background were
sometimes labeled and sometimes missed throughout the di#erent
recordings and participants. The same problem occurred with wa-
ter in the background in general. For participant P01, water in the
drain and audible pipes were annotated, but not for most of P02’s
recordings. In some cases, pouring water was annotated as pour,
and in other cases it was annotated as water. Sometimes, multiple
water labels were overlapping or contained inside another.

Diversity of water sounds. The water class contains a multitude
of di#erent, water-related sounds. The sound of a running tap
usually comes with a distinct “noise”, whereas other water-related
sounds can be less speci!c. Single water droplets make a distinct,
short sound, whilst pipes “gurgling” in the background produce a
completely di#erent sound. Between the sounds of pouring water in
a cup, “splattering” water in a sink, and a pressure cooker releasing
steam, there is a lot of auditory diversity. Although we fully agree
that all these sounds should be grouped under the water label, we
argue that it is naturally di$cult to train a classi!cation model for
such a diverse class of many-shaped audio labels. Therefore, we
argue that the less diverse and more consistent class tap water is a
valuable addition to the HD-Epic dataset.

3.2.3 Auditory challenges with the new labels. In the cases of some
of the newly created tap water audio annotations, issues can be
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Table 2: Durations of water and tap water labels in the dataset, per participant and aggregated. The table splits the durations up
into all labels and labels lasting three seconds or longer. The ratio of the remaining labels, if we remove labels shorter than
three seconds, is shown in the third column from the right. On aggregate, 89% of the duration of water annotations are kept,
and 98% of tap water annotations. The ratio between tap water and water annotations is shown in the rightmost columns.

duration (s) duration (s) >= 3s ratio >= 3s ratio ratio >= 3s
participant id tap water water tap water water water tap water tap water / water tap water / water
P01 895.38 2737.15 832.48 2491.81 0.91 0.93 0.33 0.33
P02 765.34 2189.15 752.25 1758.26 0.80 0.98 0.35 0.43
P03 1821.17 3261.02 1787.52 3025.74 0.93 0.98 0.56 0.59
P04 1474.32 1872.03 1457.36 1732.96 0.93 0.99 0.79 0.84
P05 297.81 541.46 294.93 427.84 0.79 0.99 0.55 0.69
P06 1432.18 1588.87 1429.38 1458.60 0.92 1.00 0.90 0.98
P07 789.91 944.50 789.91 844.36 0.89 1.00 0.84 0.94
P08 990.47 1838.34 984.14 1754.68 0.95 0.99 0.54 0.56
P09 1128.00 2008.62 1111.22 1687.98 0.84 0.99 0.56 0.66
Agg. 9594.57 16981.14 9439.19 15182.24 0.89 0.98 0.57 0.62

predicted from the characteristics of the contained sounds. Partici-
pant P02, e.g., was using a very silent tap, with water sometimes
running in the background, far away from the used microphones.
Additionally, P02 and P04 sometimes only turned on their taps
to a slight drizzle, which was barely audible, and ran without the
often-present “water "ow noise”.

In other cases, loud and similar-to-water noises were in the
background. For P03 and P06, extractor hoods were sometimes
running in the background, making the tap hard to hear.

3.3 Analysis and validation of the new labels
Intersection over Union. To better understand the similarity of

the tap water class to the water class, we report the intersection
over union (IoU) of the two classes, calculated and aggregated over
each water annotation (see Eq. 1). The calculation of the IoU is done
by merging all overlapping water and tap water regions and then
aggregating their IoUs over the entire dataset.

IoU =
| (tap water ↓ water) |
| (tap water ↔ water) | (1)

Table 3 shows the IoU per participant and over the entire dataset.
The IoU spans from 0.364 to 0.916with a total IoU of 0.616 calculated
on the dataset.

Coverage of tap water by water. We also report the coverage in
Table 3, which is de!ned as the ratio of containment of tap water,
i.e., the ratio of tap water that is contained inside water annotations
(see Eq. 2).

coverage =
| (tap water ↓ water) |

| (tap water) | (2)

The coverage is in the range of 93 % to 99.9 % across all participants,
and has a value of 97.8 % for the entire dataset. The coverage value
is high, as we only annotated near the water labels of the original
dataset. However, the value also supports the initial assumption
that tap water is a subclass of water, as it is mostly covered by water
annotations.

To conclude this subsection, our initial validation of the tap water
labels shows that we successfully annotated a subclass of water,

and that tap water makes up for around 63% of all water-related
sound in HD-Epic’s water annotations.

3.4 Machine Learning Experiments
To validate the audio detection of tap water, we trained machine
learning classi!ers, and additionally compared the results with the
same classi!ers trained on water.

3.4.1 Classification tasks. We de!ne the task of classifying water
or tap water as the positive class against all other classes as the
Null class. We report the results both for a 70 ↗ 30% train-test-
split over all participants (Task A), as well as for a more realistic
leave-one-participant-out (LOPO) paradigm (Task B). The train-
test-split shows how well the classi!ers perform for each of the
positive classes under conditions where individual-speci!c patterns
may be learned during training. The LOPO split yields a more
realistic estimate of real-world performance: Since the participant
and environment used for evaluation are not shown to the model
during training, the performance is indicative of the real-world
performance we could expect for unseen environments.

3.4.2 Features. Similar to previous publications, we used frequency-
domain feature vectors. We focused on the Mel-Frequency Cep-
stral Coe$cients (MFCCs), spectral features such as centroid, band-
width, contrast, rollo#, cover ([11]), as well as the chromagram,
zero crossing rate, and the root-mean-square energy (RMSE) of the
audio signal. We calculated each of these for 2-second-long sliding
windows without overlap. The features were calculated using the
implementations contained by the “librosa” python library, and
then aggregated for each window, using the mean, sd, min, max,
and median as aggregation functions. In total, this left us with a
41-dimensional feature vector.

In line with the literature, we calculated log-mel spectrograms
for the use in a neural network [24, 27]. Example spectrograms
are shown in Figure 1, where the intervals chosen show the broad
spectrum of “noise” that we can expect from tap water sounds.

3.4.3 Classification models. For our intended use of wearable tap
water detection, models must be small and computationally simple
enough to run on mobile CPUs, i.e. we have to refrain from using
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Table 3: IoU: Intersection over Union between the original water annotations and the newly created tap water class. Coverage:
Ratio of containment of tap water annotations inside water.

participant P01 P02 P03 P04 P05 P06 P07 P08 P09 All
IoU 0.364 0.429 0.614 0.842 0.651 0.871 0.916 0.542 0.618 0.616
coverage 0.999 0.995 0.991 0.983 0.976 0.927 0.993 0.984 0.968 0.978

Figure 1: Two examples per class of the log-mel spectrograms,
used as input for the CNNs. The spectrograms for the water
class are chosen as examples that are not also in tap water.

large transformer models. Since the scope of this work is to show
the usefulness of the newly added class, and not to achieve the
highest possible results, we stuck to two simple but appropriate
classi!cation models.

We used a random forest (RF) classi!er and trained it on the fea-
tures described in 3.4.2. We used the standard settings of sklearn’s
implementation, except “class_weight” which we set to “balanced”
to take the skewed distribution into account, and “n_estimators”
which we set to 200.

Similar to the literature [27], we trained a CNN on the log-mel
spectrograms as described in 3.4.2. The CNN consisted of !ve 2D-
convolutional layers, each followed by a 2x2max-pooling layer. Two
fully connected layers form the classi!cation head of the network
architecture. We trained the CNNmodel using the ADAM optimizer
and weighted binary cross-entropy as the loss function.

Since the dataset is highly imbalanced for our target classes,
we also report a baseline performance, i.e. the best-performing
“dummy classi!er”, w.r.t. the F1 score. In our case, the “uniform” pre-
diction strategy yielded the best baseline performance throughout
all experiments.

3.4.4 Reported metrics. We report the accuracy, as well as F1 score,
precision, and recall for all tasks, models, and target classes. Since
water and tap water only make up for less than 10 % of the dataset,
accuracy alone is not an expressive metric. Hence, we also report
the F1 score and its components, precision and recall, as they pro-
vide more information about the actual predictive results. Also, to
make the comparison of the performance for the two target classes
easier, we calculate the ratio between the classi!er performance
and the baseline performance for the F1 score metric (R. to Bln.).
This performance ratio better indicates the relative performance of
the classi!er w.r.t. to the general di$culty of the task.

3.4.5 ExecuTorch runtime model. To share the models created in
this work, we have trained one CNN model on all available data
and made it available pre-trained for ExecuTorch, PyTorch’s mobile
deployment solution. The model can be used to detect tap water.
As input, it requires windows of computed log-mel spectrograms,
as described above. For further details, we refer to our repository.

4 Results
Table 4 and Figure 2 show the results for Task A and Task B. For Task
B, the table only reports aggregated results, while Figure 2 includes
the results per participant. Overall, the trained classi!ers’ prediction
performance on the tap water class is higher than the performance
on the water class. The low baseline F1 scores of 0.11 for tap water
and 0.17 for water are indicative of the dataset’s natural imbalance.
These baseline results show that it is very di$cult to achieve good
F1 scores because the class distribution is strongly imbalanced.

For Task A, the Random Forest performs slightly better than
the CNN, and for both classi!er types, the task of classifying tap
water against all other classes yields the highest performance, in
terms of F1 score, Accuracy, and Precision. The CNN consistently
outperforms the Random Forest with its Recall results. The highest
F1 scores reached are 0.75 on tap water and 0.71 on water (both
CNN). Due to the distribution, reaching the same F1 score is more
di$cult for the tap water class. However, the general results with
a higher F1 score for tap water in Task A support our expectation
that the tap water class is more homogeneous and therefore easier
to learn and predict. This becomes even more apparent when we
consider the ratio to the baseline (R. to Bln.) results. For the tap
water class, the classi!ers outperform the baseline by 668 % (CNN)
and 656 % (RF), while for water the ratios are only 410 % (CNN) and
391 % (RF).

The performance for the LOSO-CV split of Task B di#ers strongly
from participant to participant. While the baseline results are rel-
atively similar for most participants, they are lower for P05 for
both classes, (F1: water : 0.08, tap water : 0.05). P05 is also the partic-
ipant for which the classi!ers achieve the worst cross-validation F1
scores, all around 0.3. The generalization performance to the un-
seen participants’ data also varies per classi!er, i.e., sometimes the
CNN has a slight edge over the Random Forest, and vice versa. The
best performances are reached for P06, where the CNN achieves an
F1 score of 0.73 for water and the Random Forest reaches 0.66 for
tap water. On average, the CNN generalizes slightly better on both
tap water (CNN: 0.48, RF: 0.47) and water (CNN: 0.52, RF: 0.45). The
results for all participants are shown in Figure 2. While the results
for the F1 score are similar across classi!ers and target class, the
ratio to the baseline is still better for tap water with a ratio of 447 %
(CNN) compared to 315 % for water (also CNN). A Shapiro-Wilk test
(stat = 0.934, 𝑁 = 0.226) indicated normality. Both a paired 𝑂-test
(𝑁 = 0.0005) and Wilcoxon test (𝑁 = 0.0019) showed that tap water
signi!cantly outperformed water w.r.t. the ratio to the baseline.

Notably, the RF achieves higher accuracy and precision results
throughout the experiments, and, in turn, the CNN achieves higher
recall scores.

5 Discussion and Future Work
We discussed that tap water detection has direct applications in
smart home systems, hygiene monitoring (e.g., handwashing), and
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Table 4: Results of Task A: Random Train-Test-Split and Task B: Leave-One-Participant-Out Cross-Validation.

Target Class Classi!er Task A: Random Train-Test-Split Task B: LOSO-CV
F1 Score Acc. Precision Recall R. to Bln. F1 Score Acc. Precision Recall R. to Bln.

Tap Water
Baseline 0.11 0.50 0.06 0.49 – 0.11 0.50 0.07 0.51 –
CNN 0.75 0.97 0.75 0.76 668.29% 0.48 0.92 0.48 0.54 446.83%
Random Forest 0.74 0.97 0.92 0.62 655.68 % 0.47 0.95 0.76 0.35 427.39 %

Water
Baseline 0.17 0.50 0.10 0.50 – 0.17 0.50 0.10 0.51 –
CNN 0.71 0.94 0.73 0.69 409.63% 0.52 0.89 0.51 0.60 314.56%
Random Forest 0.68 0.95 0.92 0.53 391.29 % 0.45 0.92 0.78 0.33 280.98 %

Figure 2: Results of classi!er training and evaluation for Task A and Task B. F1 score results (upper row) are displayed for the
leave-one-participant-out cross-validation, per participant (and thus per environment, left) and aggregated (center), as well as
for Task A (random train-test-split, right). The baselines are consistently outperformed by both CNN and Random Forest, for
both target classes. We also show the ratio of the F1 score to the respective baseline F1 score (lower row), for the same splitting
modalities (left: Task B and right: Task A). Classi!ers for tap water mostly achieve higher ratios than classi!ers for water.

resource conservation. Especially for HAR tasks, the general pres-
ence of water sounds contains less contextual information than tap
water being audible.

Through the statistics and validation analysis presented in 3.2.1
and 3.3, it becomes apparent that tap water is mostly a subclass of
water in the HD-Epic dataset. Its duration in the dataset makes up
for around 60% of the duration of all water. While tap water can
also represent diverse sounds, depending on the tap used and the
water "ow intensity, it appears to be more homogeneous thanwater.
Water represents a superclass of multiple liquid-related sounds that
are related, but oftentimes not speci!c enough for possible use
cases, especially in HAR.

The machine learning results presented in Section 4 also hint
at tap water being easier to learn by classi!ers. Especially when
compared to the baseline performance, the resulting F1 scores for
tap water are consistently higher than the F1 scores for water. We
used lightweight classi!ers and did not extensively optimize the
model training. In future work, we want to analyze failure cases
and relate them to the challenges listed in Section 3.2.3, searching
for potential solutions. A higher raw performance could likely
be achieved using state-of-the-art edge-optimized classi!ers. In
a future application, prediction post-processing, e.g., smoothing,
could be used to improve the detection results, as the smoothing
would likely be able to !lter out outliers in the prediction.

6 Conclusions
This work describes how we created and evaluated a publicly avail-
able dataset of precise tap water audio annotations in real-world
kitchen environments. We based our work on the HD-Epic dataset,
which provided a well-annotated basis with a generic water class.

We systematically evaluated how the tap water audio annotation
class is mainly a subclass of water, and argued why it is useful to
consider it separately. Applications for the newly created labels can
be found in a multitude of tasks, such as hand washing detection,
hygiene monitoring and compliance, or resource usage surveillance.

By reporting initial classi!cation performance results, we show
that despite it representing a less frequent class in the dataset,
training classi!ers on the more uniform tap water is not more
di$cult than on the water class. Especially when compared to the
baseline performance, models trained to detect tap water achieve
higher results.

In this work, we additionally discussed multiple applications of
tap water detection in acoustic sensing.

We conclude that the created 717 labels provide a valuable con-
tribution to the audio labels of HD-Epic and can, in future work, be
used to train o#-line classi!ers for tap water detection. All anno-
tations, code for generating the results, and the pre-trained model
are available in our GitHub repository1.
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